Letter of Transmittal

October 18, 2013

Heather Sustersic Structural Thesis Advisor The Pennsylvania State University Had132@psu.edu

Dear Professor Sustersic,

This report was written to fulfill the third of five technical report requirements set by the structural faculty for Penn State's Senior Thesis Capstone Project. This report, Technical Report 3, was assigned September 27, 2013.

Technical Report 3 has two main goals. First, I evaluate the adequacy of the members in an existing typical floor bay under gravity loading. Secondly, I compare three alternative gravity framing systems to the original system and discuss each system's advantages and disadvantages. The scope of this report is limited to gravity framing subject to gravity loads only. Typical bay dimensions of the original design are maintained for the analysis of the subsequent floor systems to generate a fair comparison that allows their validity as design solutions to the building's geometry and loading to be explored. Finally, the findings of this report are documented in a calculations binder and presented.

Thank you in advance for reviewing this report and the accompanying presentation. I look forward to hearing your feedback.

Sincerely,

Natasha Beck Structural Option Architectural Engineering Thesis Student

Enclosed: Technical Report 3

Reinsurance Group of America (RGA) Global Headquarters

Technical Report 3 Gravity Member Spot Checks & Alternate Bay Systems

16600 Swingley Ridge Rd. Chesterfield, MO Natasha Beck, Structural Heather Sustersic 18 October 2013

Table of Contents

General Information	4
Abstract	4
Executive Summary	6
Site Plan	7
Vicinity & Location Plan	8
Documents List	9
Gravity Load Revisions	G.1
Floor and Curtain Wall	G.2
Roof Loads	G.3
Existing System: Composite Steel	S.1
Layout Sketch	S.2
Evaluation	S.3-S.11
Alternate System 1: Floor Joist System	A1.1
Layout Sketch	A1.2
Evaluation	A1.3-A1.5
Alternate System 2: Hollow Core Plank System	A2.1
Layout Sketch	A2.2
Evaluation	A2.3-A2.5
Nitterhouse Specification Sheet	A2.6
Alternate System 3: One-Way Slab System	A3.1
Layout Sketch	A3.2
Evaluation	A3.3-A3.11
System Comparisons	C.1
System Weights	C.2
System Costs	C.3

General Information

This section provides background information for RGA Global Headquarters.

Reinsurance Group of America (RGA) Global Headquarters

16600 Swingley Ridge Rd. Chesterfield, MO

Project Team

Owner: Reinsurance Group of America, Inc. Owner Representative: Gateway Ridge LLC General Contractor: Clayco Architect: Gensler Structural Engineer: Uzun & Case Civil Engineer: Stock & Associates, Inc. Landscape Architect: Forum Studio

Building Information

Occupancy: General office and training Size: 405,000 gross square feet Total Estimated Cost: \$150 million Project Delivery: Design-Build

Lighting Consultant: Randy Burkett Lighting Design, Inc. MEP & Fire Protection: Environmental Systems Design, Inc.

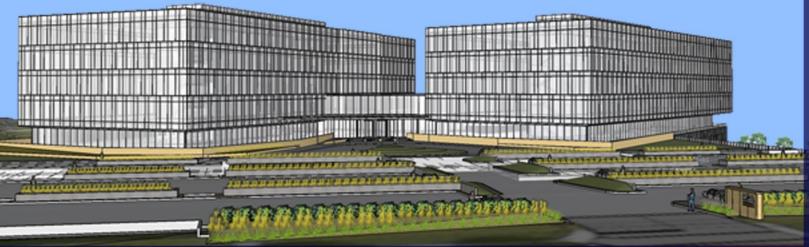
Architecture

- Two skewed, 5 story office towers with curtain wall façades are linked by an amenities level
- Open plan office towers with a central core maximizing circulation, flexibility and daylight
- Amenities include kitchen and seating, fitness center, café and landscaped terrace
- Two story underground parking garage with limestone façade where it is exposed
- Three landscaped bio-retention basins
- Designed to achieve LEED Silver

Structural

- Two, 5 story steel office towers with composite floors with 3 1/2" semi-lightweight concrete topping
- Upper four levels cantilever 40' over the first level and is supported by a steel truss and plate girder system
- Office towers have a braced frame lateral system while the parking garage utilizes reinforced concrete shear walls
- Parking garage is post-tensioned, reinforced concrete
- Drilled concrete piers 36" to 78" in diameter with an allowable end bearing pressure of 80 ksf

Mechanical


- Designed for year-round cooling
- Three, 350 ton water cooled chillers serviced by cooling towers
- Four 60,000 CFM air handling units serve the office towers
- A medium pressure loop is provided on each floor for VAV branches as needed for flexibility
- Separate fan powered terminal units (FPTU) heat the floor cavity of the cantilever space to counteract a potential heat sink

Lighting & Controls

- Occupancy sensors in restrooms
- Exterior and restroom lighting fixtures on 277 volts
- Fluorescent lamps and LED lamps specified to date
- Interior lighting design is currently in the final design stages

Electrical

- Mechanical and lighting serviced by a 480/277 volt system
- Office receptacles are serviced by 208/120 volt system
- Both systems are fed by 3-phase, 4-wire buses
- Four main switchboards (MSWBD) are rated at 3000 amperes
- Emergency equipment is supported by a diesel engine generator

Natasha Beck | Structural

http://www.engr.psu.edu/ae/thesis/portfolios/2014/nmb5163/index.html

Executive Summary

The purpose of this technical report is to evaluate the existing structural systems in the Reinsurance Group of America's Global Headquarters. This included preliminary analysis of the gravity and lateral systems and any unique structural features of the project. It looks at the main structural components and their influence on the load paths for wind, seismic, soil and gravity, which influence the main structural systems.

This preliminary research was executed by reviewing project documents, primarily drawings, and tracking these systems throughout the buildings. Findings of the systems' functionality and influence on other pieces of the project were then recorded and supporting information compiled into the body of this report.

In conclusion, critical structural features that will influence future analysis are the 40' cantilever truss system and maintaining the integrity of the soil load path so that it does not redistribute into the post-tensioned slabs.

Site Plan

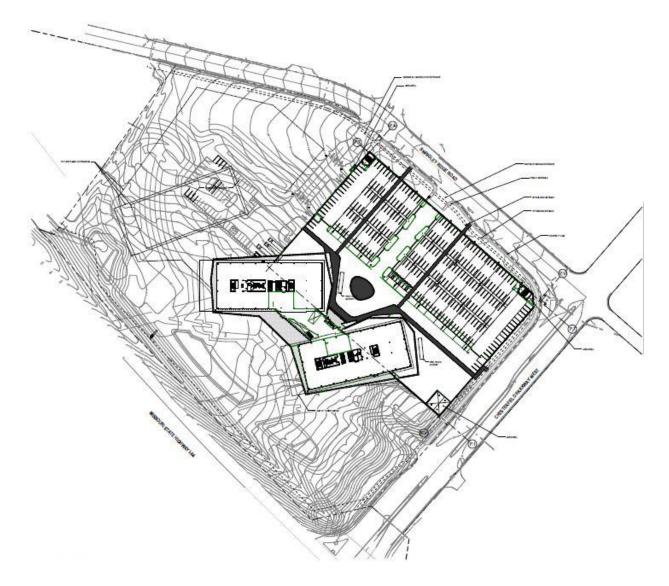
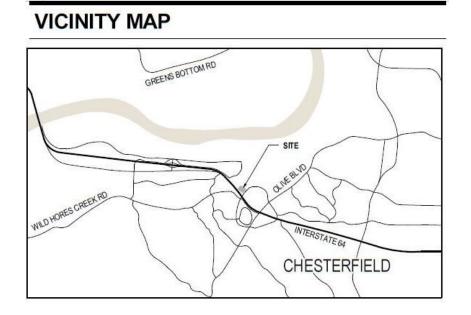



Figure 1: RGA Global Headquarters Site Plan by Gensler

Vicinity and Location Plans

LOCATION PLAN

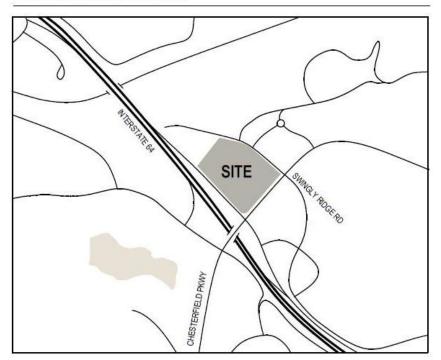
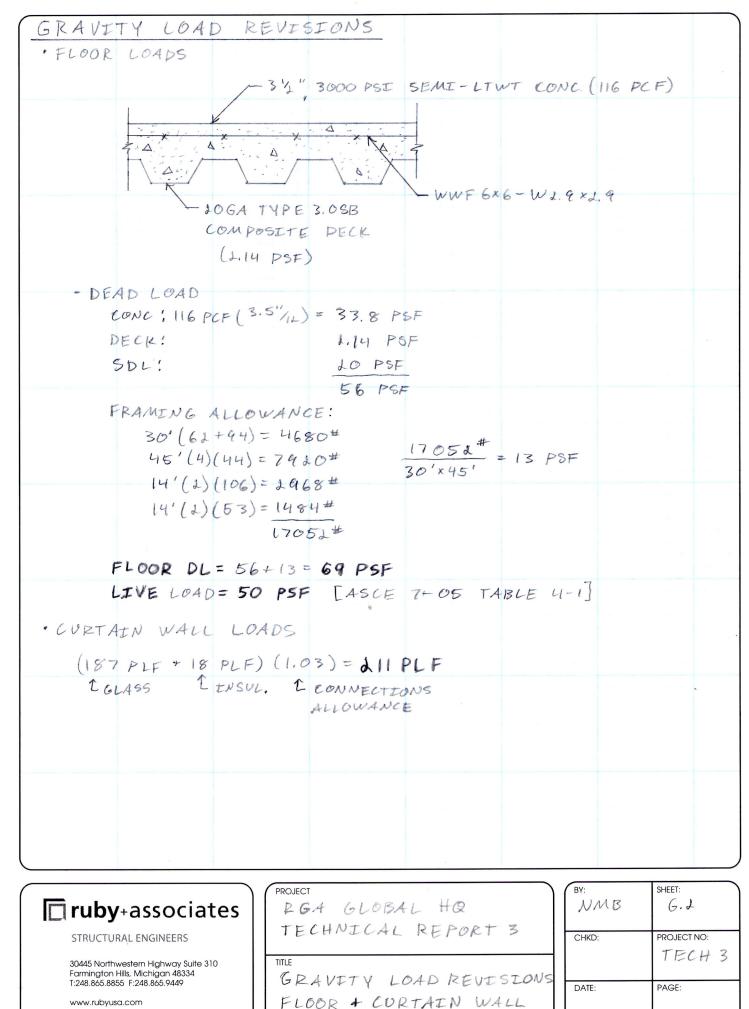
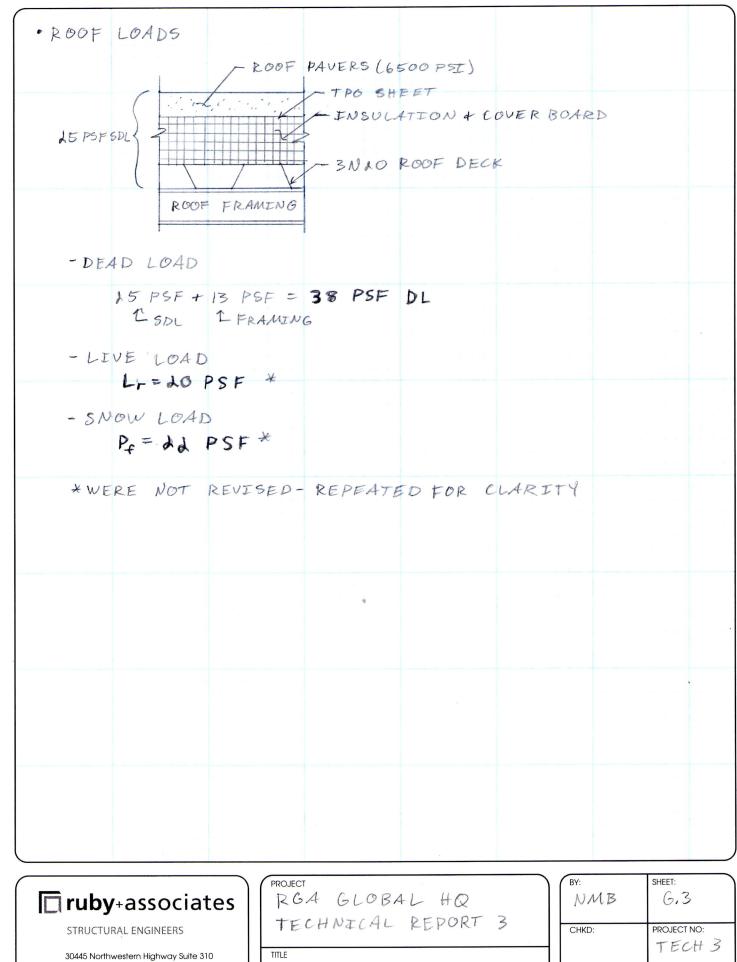


Figure 2: Vicinity and Location Plans by Gensler

Page 8


Documents List

Listed below are the documents used in preparation of Technical Report 3.


- RGA Core and Shell Addendum A Design Documents by the Project Team (See Abstract)
- Minimum Design Loads for Buildings and Other Structures, ASCE 7-05
- AISC Steel Construction Manual, AISC 360-10
- Vulcraft Composite Deck Tables
- Vulcraft Steel Roof and Floor Deck Tables
- Vulcraft Steel Joist Tables
- Nitterhouse Hollow Core Load Tables
- Reinforced Concrete Mechanics & Design by Wight and MacGregor
- PCI Handbook, 6th Ed.
- RS Means Assemblies Cost Data 2013
- Design of Steel Structures Class Notes
- Design of Masonry Structures Class Notes
- Design of Concrete Structures Class Notes

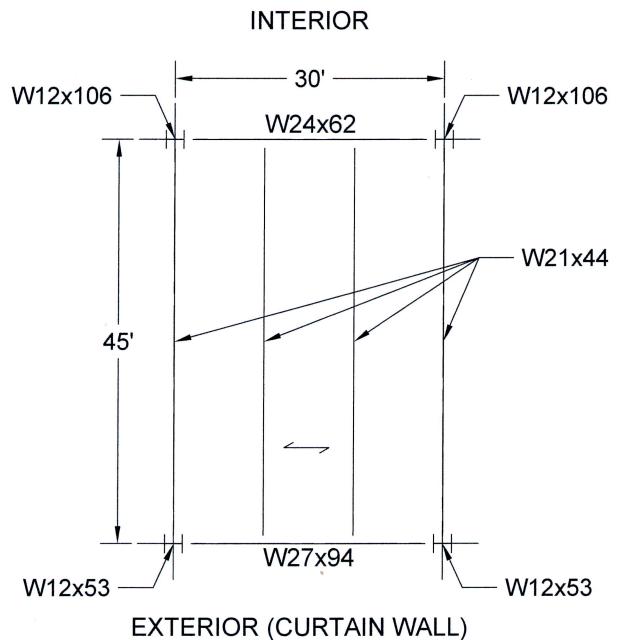
Gravity Load Revisions

This section presents revisions to the gravity load determination.

www.rubvusa.com

Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449

www.rubyusa.com

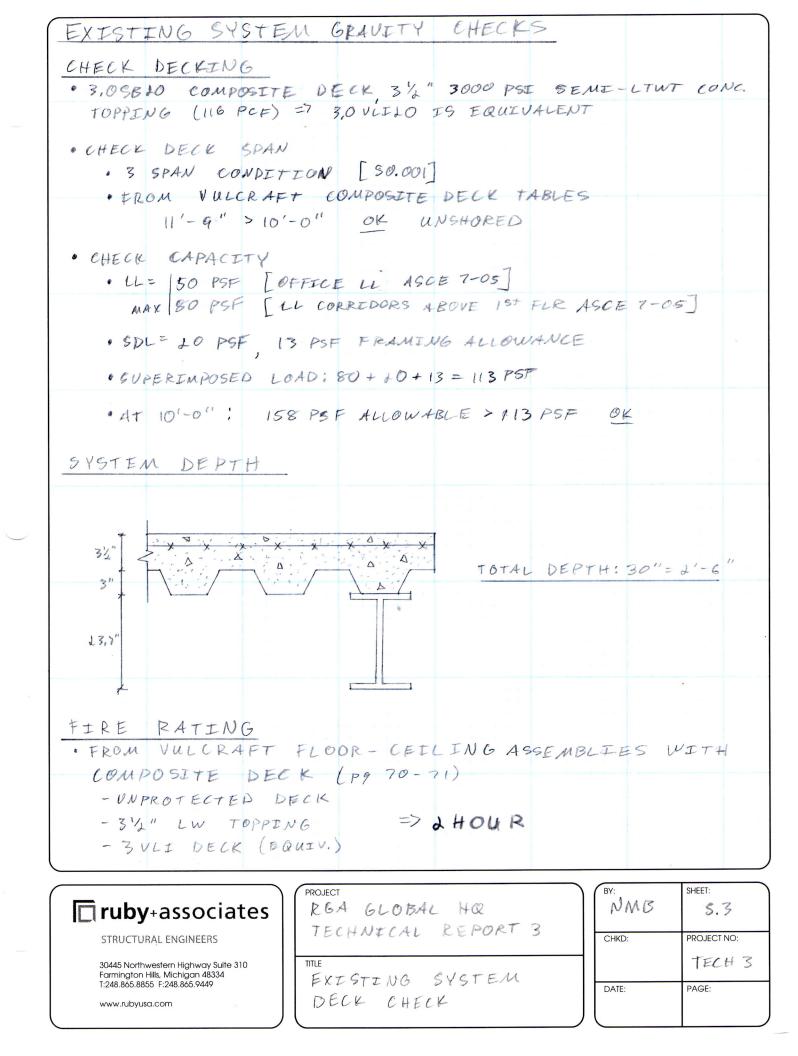

GRAVITY LOAD REVISIONS ROOF

PAGE:

DATE:

Existing System: Composite Steel

This section presents member evaluations of the existing composite steel system for a typical bay.



NOTES: Fy=50 KSI Es=29,000 KSI **2 HR FIRE RATING**

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

TYPICAL BAY-ORIGINAL SYSTEM SCALE: 3/32"=1'-0"

CAMBER=1 1/2" OR 1 3/4"

Tuby +associates	PROJECT RGA GLOBAL HQ TECHNICAL REPORT 3	BY: NMI3 CHKD:	SHEET: 5,4 PROJECT NO:
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449 www.rubyusa.com	THLE EXTSTING SYSTEM BEAM CHECK	DATE:	TECH 3 PAGE:
www.rubyusa.com	DEAM CHECK		

· FIND SQn Qu= 0.5 Asc Jf'c Ec MIN ASC FU · 3/4" & STRONG POSITION SHEAR STUDS - Age = W (0.375) + = 0.4418 int - Fu= 65 KSi - Ec = We" 5 Sticles = (116 per) 1.5 J3KS = 2164 KS; - Rp = 0.75 [STRONG POSITION, 4/50,005] $\frac{-w_r}{h_r} = \frac{4.75}{3} = 1.58 > 1.5$ i Rg = 1.0 $Q_{n} = \begin{bmatrix} 0.5(0.4418in^{4}) & 3.2164 \end{bmatrix} = 17.8^{k} \qquad \therefore \qquad Q_{n} = 17.8^{k} \\ 0.4418(65) = 28.7^{k} \qquad \therefore \qquad Q_{n} = 17.8^{k} \\ \end{bmatrix}$ EQn = 26 (17.8 K) = 463K · DETERMINE OMn Come 0.85 f'c betet = 0.85 (3) (10.11) (3.5) = 1071 K TEMAX AS FY = (13)(50) = 650 K EQn & TSmax & Comax WEN ZQn = 463K => CONTROLS : PARTIALLY COMPOSITE $\mathbf{q} = \frac{2Q_n}{0.85 \, t'c \, b_{eff}} = \frac{463}{0.85 \, (3)(120'')} = 1.51''$ $X = \frac{A_5 F_y - 5 Q_n}{\lambda F_y b_z} = \frac{650 - 463}{\lambda (50)(6.5)} = 0.288$ $M_n = A_s F_y(a_{\Delta}) + 2Q_n(t - a_{\Delta}) - \lambda F_y b_f x(x_{\Delta})$ =650(10.7/1)+463(3.5-1.51/1)-2(50)(6.5)(0.188)(0.188) Mn = 7970 Ft.K D = 0.9ØMn = 7170 ft.k ØMn=7170 Gt.K > Mu=337 Ft.K :: OK FOR STRENGTH

ruby +associates	PROJECT RGA GLOBAL HQ TECHNICAL REPORT 3	BY: NMB	SHEET: 5,5
STRUCTURAL ENGINEERS	LECHNEENE REPORT	CHKD:	PROJECT NO:
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334	TTLE EXISTING SYSTEM		TECH 3
T:248.865.8855 F:248.865.9449		DATE:	PAGE:
www.rubyusa.com	BEAM CHECK		
)			

• CHECK UNSHORED STRENGTH
WAIYUU
$$\Rightarrow \#Mp = 358 \ t + K \ [ATSC 360-10 TABLE 3-2]$$

 $W_{\alpha} = 1.4 (J, 14 + 35, 3)(10) + 1.4 (BM SELF)
= 1.4 (J, 14 + 35, 3)(10) + 1.4 (144) = 0.565 KIE
 $W_{k} = 1.1 (36 \cdot 10 + 144) + 1.6 (40)(10) = 0.805 \ klf \Rightarrow controls
COUSTLE 4
 $M_{k} = \frac{(0.805)(45^{+})}{8} = 204 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{8} = 104 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{8} = 204 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{8} = 204 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{8} = 204 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{8} = 204 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{8} = 204 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{8} = 204 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{8} = 204 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{128} = 204 \ f + K$
 $\#M_{k} = \frac{(0.805)(45^{+})}{1240} = 2.45^{-} \times 1.54^{-} \ f = 1.52^{+}$
 $A_{WCAAK} = \frac{1}{140} = \frac{115 \cdot 11}{140} = 2.45^{-} \times 1.54^{-} \ f = 1.52^{+}$
 $A_{WCAAK} = \frac{1}{140} = \frac{115 \cdot 11}{140} = 2.45^{-} \times 1.54^{-} \ f = 1.52^{+}$
 $K_{k} = 3.5 - \frac{1.51}{14} = 1.75$
 $K_{k} = \frac{20a}{1500} \ f = 1.57^{-} \ f = 1.75^{-} \ f = 1.55^{-} \ f = 1.55^{-}$$$

ruby +associates	PROJECT RGA GLOBAL HQ TECHNICAL REPORT 3	BY: NMB	SHEET:
STRUCTURAL ENGINEERS	TECHNECKE REPORT S	CHKD:	PROJECT NO:
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334	TILE EXESTENG SYSTEM		TECH 3
T:248.865.8855 F:248.865.9449 www.rubyusa.com	BEAM CHECK	DATE:	PAGE:
)			

· CHECK TOTAL LOAD DEFLECTION WTL = 1.33 KLF A+L = 5(1.33)(454)(1728) = 2.39" ATLMAX = 410 = 45.12 = 2.25" < 2.39" ", CAMBER · CAMBER SPECIFIED AT 11/2" AND 1 3/4" CHECK GIRDER Wayx62: As = 13.0 in + d= 13.7" 27 STUDS by = 7.04 in Ix = 1550 in 4 LA PREVIOUSLY DETERMINED Wu = 1.2 (62) /1000 = 0.0744 KIE · DESIGN MOMENT $M_{u} = \frac{WL}{K} + B_{i} q$ $= \frac{0.0744(30^{+})}{8} + 59.9(10) = 607 \text{ ft} \cdot \text{K} = M_{\text{H}}$ · FIND beff SPAN 18 = 30 (123/8 = 45" best = 1x MEN /2 (12) (TRIB WEDTH) = 12 (12) (45') = 270" : 1 (45) = 90" = beff · FIND SQn - Qn = 17.8K (DETERMINED PREVIOUSLY) EQn = 17,8(27) = 481 K · DETERMINE OMn CCMAX = 0.85 f'c befet = 0.85 (3) (90) (3.5) = 803 K TS MAX = AS Fy = 13 (50) = 650 + EQn= 481 × => CONTROLS EQN & TSMAY & COMAX : PARTIALLY COMPOSITE

	PROJECT	BY:	SHEET:
ruby +associates	RGA GLOBAL HQ	NMB	5.7
STRUCTURAL ENGINEERS	TECHNICAL REPORT 3	CHKD:	PROJECT NO:
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334	THE EXISTING SYSTEM	1	TECH 3
T:248.865.8855 F:248.865.9449 www.rubyusa.com	GTRDER CHECK	DATE:	PAGE:
)			

$$\begin{aligned} \frac{2@_{n}}{6854'c} \frac{2@_{n}}{685'c'} \frac{4@_{n}}{685'c'} \frac{4@_{n}}{685'c'} \frac{1}{60'c'} \frac{1}{2} \frac{1}{2} \frac{1}{60'c'} \frac{1}{2} \frac{1}{2$$

CHECK INTERIOR COLUMN
$\frac{30'}{11} \frac{30'}{11} \frac{30'}{11} \frac{1}{11} \frac{1}$
· LIVE LOAD REDUCTION AT = (45')(30') = 1350 SF > 400 SF REDUCE KLL = 4 [ASCE 7-05 TABLE 4-2]
$- FLOOR: L_0 = 50 PSF$ $L = L_0 \left(0.15 + \frac{15}{5} \right) \left[ASCE 7-05 EQN, 4-1 \right]$ $L = 50 \left(0.15 + \frac{15}{5} \right) = d2.7 PSF CONTROLS$ $L_{MEN} = 0.4L_0 = 0.4 (50) = 20 PSF$
$-ROOF:$ $L_r = L_r = LOPSF$ $MAX S = dLPSF => CONTROLS$
DEAD LOADS - FLOOR: D= 69PSF - ROOF: Dr= 38PSF
 LOAD COMBINATIONS I.4D => DOESN'T CONTROL BY ISPECTION I.4D + 1.6L + 0.55 I.2D + 1.65 + 0.5L
THE CONTROLLING CASE WILL HAVE THE LARGER FACTOR ON THE LARGER LOAD: L>S :. 1. D+ 1.6L+0.55 CONTROLS
Image: structural engineersPROJECT R GA GLOBAL HQ TECHNICAL REPORT 3BY: NMBSHEET: S.9Image: structural engineersImage: structural engineersImage: structural engineersImage: structural engineersImage: structural engineersImage: structural engineersImage: structural engineers

STRUCTURAL	ENGINEERS
------------	-----------

30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449

TITLE

EXISTING SYSTEM

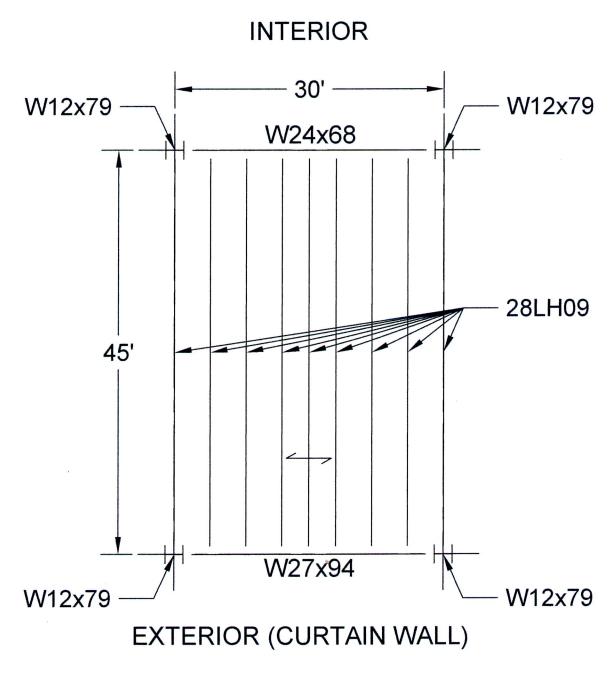
COLUMN CHECKS

www.rubyusa.com

PROJECT NO: CHKD: TECH 3 DATE: PAGE:

· DESIGN LOAD
DL = (4 FLOORS) (69 PSF) (1350 SF) + (38 PSF) (1350 PSF) = 424 K
LL = (4)(12.7)(1350) = 123K
SL = (1)(JJ)(1350) = J9.7K
$1.2 D + 1.6 L + 0.55 = P_{u}$
1.2(424) + 1.6(123) + 0.5(24.7K) = 720K = Pu
· CHECK STRENGTH
- UNBRACED LENGTH, L= 15.3'
- PIN-PIN: K= 1.0 [4ISC 360-10 TABLE C-4-7.1]
- KL = 15.3' -> TABLE USE 16'
- ØPn = 1060 K [AISC 360-10 TABLE 4-1]
CHECK EXTERIOR COLUMN
· LIVE LOAD REDUCTION
A+ = (30')(22.5') = 675 SF > 400 SF : REDUCE
KIL = 4 [ASCE 7-05 TABLE TABLE 4-2]
$L = 50 \left(0.15 + \frac{15}{\sqrt{4.675}} \right) = 27.0 \text{ PSF} > 20.\text{PSF} \text{ MIN}.$
L = 50 (0.157 J 4.675)
· OTHER LOADS
S = 22 PSF
FLOOR! D= 69 PSF { SAME AS ENT. COLUMN
ROOF: Dr = 38 PSF)
CORTAIN WALL LOAD: 211 PLF ALONG 30' DIRECTION
· LOAD COMBINATION 1.2 D+1.6 L+0.55 CONTROLS
· DESEGN LOAD
DL = (4FLRS)(69)(675)+ (38)(675)+(211)(30') = 218K
$LL = (4)(27)(675) = 72.9^{K}$
$SL = (1)(\lambda_2)(675) = 14.9^{K}$
$P_{11} = 1.1 D + 1.6 L + 0.55$
$= 1, \lambda(\lambda_{18}) + 1.6(7\lambda_{.9}) + 0.5(14,9^{k}) =) P_{0} = 386^{k}$
haland holder for the for the sec
PROJECT BY: SHEET:
[ruby +associates] R GA GLOBAL HQ NMB S , 10
STRUCTURAL ENGINEERS TECHNICAL REPORT 3 CHKD: PROJECT NO:
30445 Northwestern Highway Suite 310 TITLE TECH 3
Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449EXISTING SYSTEMDATE:PAGE:
www.rubyusa.com COLUMN CHECKS

· CHECK STRENGTH - UNBRACED LENGTH = 15,3' - PIN- PIN: K=1.0 [AESC 360 - 10 TABLE C-4-7.1] - KL = 15,3' -> TABLE USE 16' - \$ Pn = 453 K [AFSC 360-10 TABLE 4-1] ØPn = 453K > Pu = 386K :. OK BY: SHEET: PROJECT RGA GLOBAL HQ **ruby**+associates TECHNICAL REPORT 3 STRUCTURAL ENGINEERS TITLE 30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449 M E

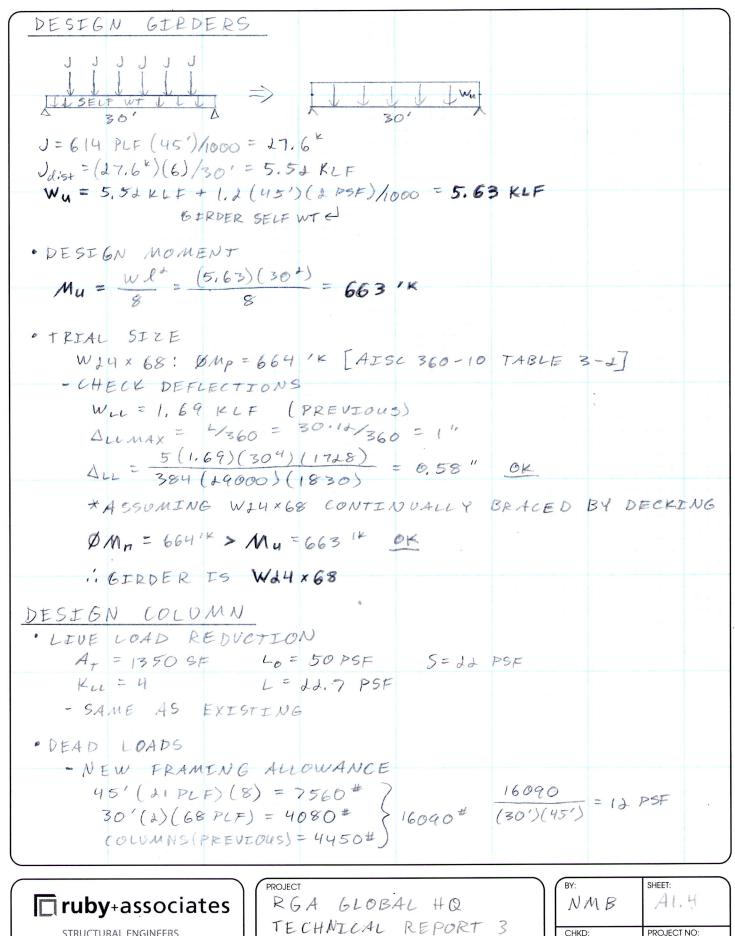

www.rubyusa.com

EXIST	ING	SYST	E
SYST	EM	COST	

NMB	5.11
CHKD:	PROJECT NO:
	TECH 3
DATE:	PAGE:
	СНКД:

Alternate System 1: Floor Joist System

This section presents schematic level member sizes and evaluation of the typical bay of floor joists.


NOTES: Fy=50 KSI E=29,000 KSI SPACING 4'-0" MAX. O.C.

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

ALTERNATE SYSTEM: FLOOR JOISTS
30'
45' NON-COMPOSITE FLOOR JOISTS SPACED 4'-0" O.C. MAX
· K SERIES JOISTS SPAN UP TO 60'>45'
· TRY 4'-O" O.C. MAX. SPACING
• FIND SUPERIMPOSED LOAD DL = 56 PSF
LL = 50 PSF
1.20+1.6L+1.2WT= WULLE WHERE WT: JOIST WEIGHT
$1.2(56)(4') + 1.6(50)(4') + 1.2W_T = W_{UT,e}$
$589 \text{ pLF} + 1.2 \text{ W}_T = \text{W}_{u+e}$ D+L+W_T = W_{te}
$(56+50)(4') = 424 PLF + W_{T} = W_{TA}$
· FROM ECONOMY TABLES [VULCRAFT APP. C]
AT 45' LARGEST CAPACITY = 583 PLF < 589 PLF
· TRY LONG SPAN JOISTS; LH SERIES
• FROM LH TABLES: 24 LHOS WATE = 625 PLF > 589 PLF + 1.2 (18 PLF) = 611 PLF OK
W = 208 PLF FOR -1360
440: 208 (1.5) = 312 PLF & 424 PLF NG
· 28 LH09
Wn+e= 844 PLF > 614 PLF [589+1.2 (21 PLF)] OK
W= 329 PLF FOR 4360 4240 = 329 (1.5) = 493 PLF > 424+21 = 445 PLF OK
PROJECT RGA GLOBAL HQ BY: SHEET: NMB AL.3
Tuby+associatesRGA GLOBAL HQNMBAI.3STRUCTURAL ENGINEERSTECHNICAL REPORT 3CHKD:PROJECT NO:
30445 Northwestern Highway Suite 310 TITLE TECH 3
Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449FLOOR JOIST SYSTEMDATE:PAGE:DATE:DATE:DATE:DATE:DATE:

TLE				
FLOOR	JOIST	SYSTEM		
		•		DATE:
JOIST	DESI	GN		
)	(

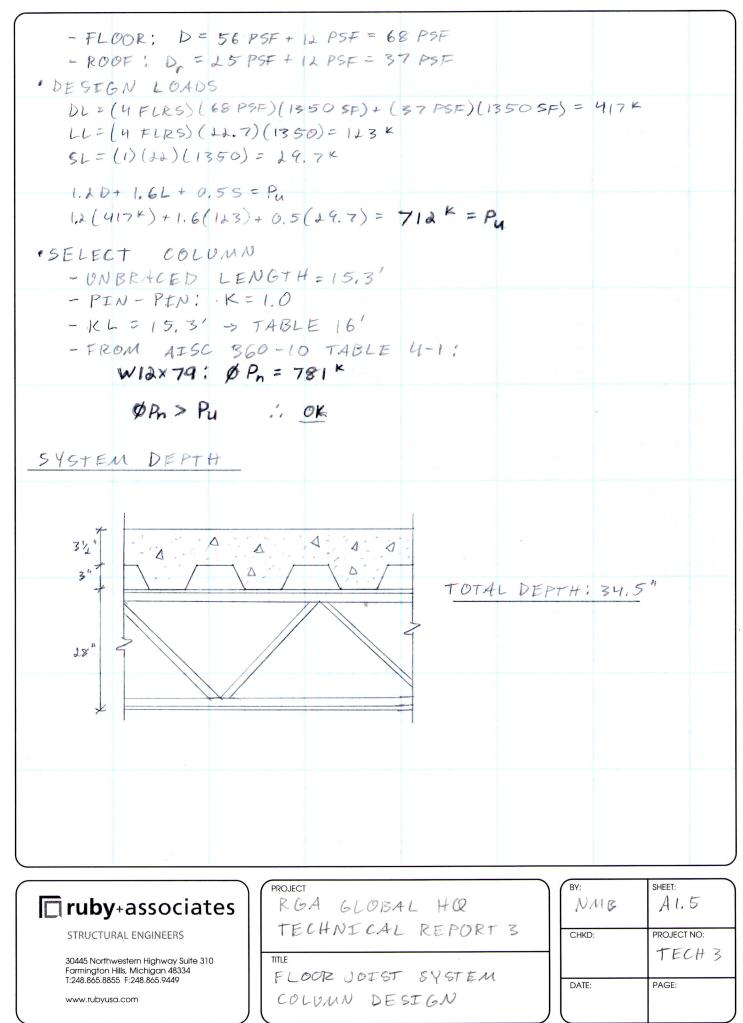
NMB	SHEET: AI.3
CHKD:	PROJECT NO: TECH 3
DATE:	PAGE:

TECH 3

PAGE:

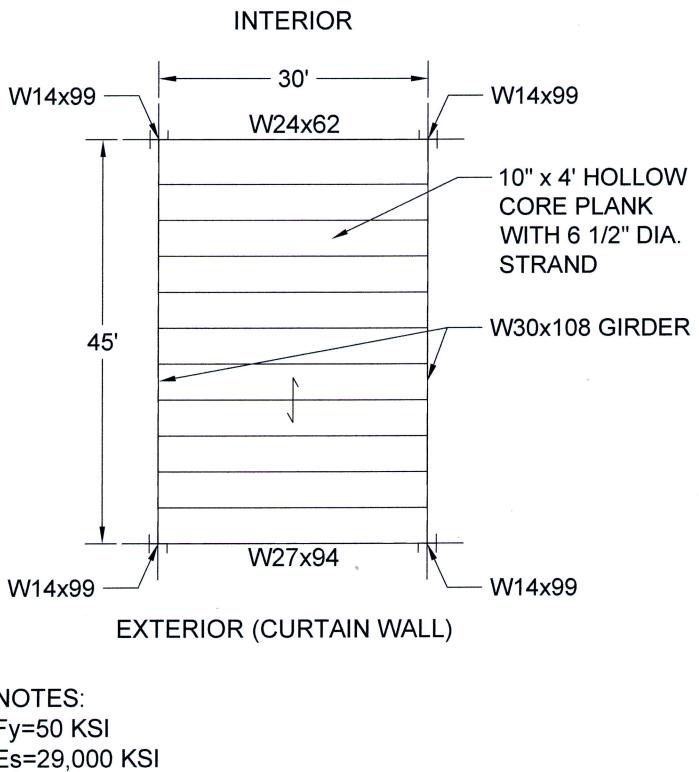
DATE:

STRUCTURAL	ENGINE	FR
SINCLIONAL	LINCHIAL	. L. 1 1


30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449

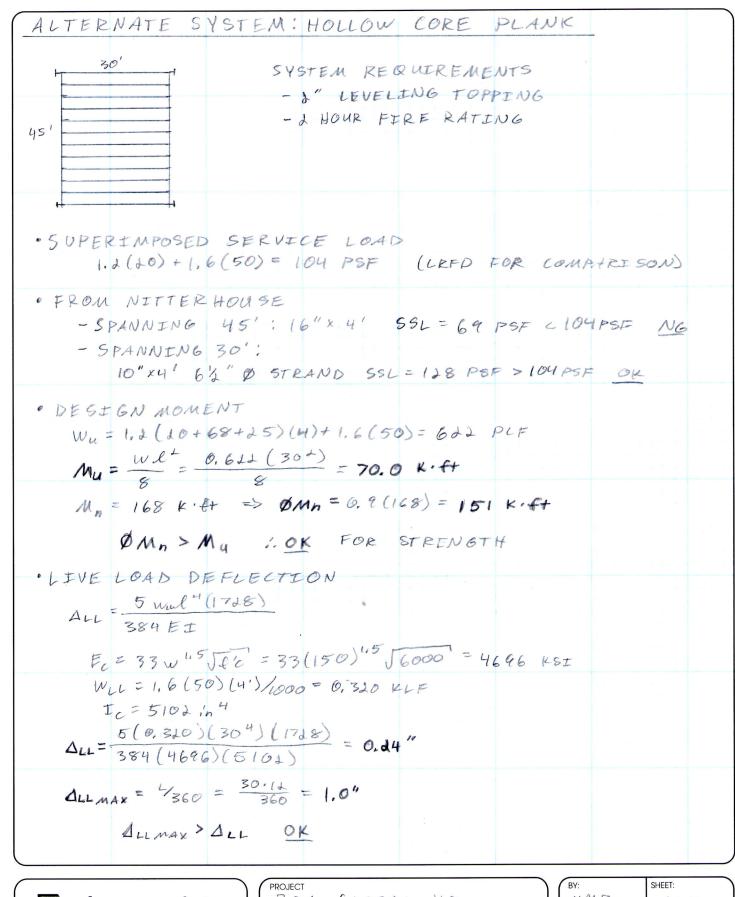
TITI F

FLOOR JOIST SYSTEM


GIRDER DESIGN

www.rubyusa.com

Alternate System 2: Hollow Core Plank System


This section presents schematic level member sizes and evaluation of the typical bay of hollow core plank on steel framing.

NOTES: Fy=50 KSI Es=29,000 KSI Ec=4696 KSI **2 HR FIRE RATING**

TYPICAL BAY-HOLLOW CORE SYSTEM SCALE: 3/32"=1'-0"

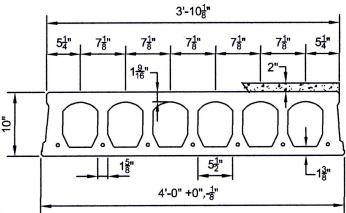
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

ruby +associates	RGA GLOBAL HQ	NMB	SHEET: AL, 3
STRUCTURAL ENGINEERS	TECHNICAL REPORT 3	CHKD:	PROJECT NO:
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449	HOLLOW CORE SYSTEM	DATE:	TECH 3
www.rubyusa.com	PLANK DESIGN		

ruby +associates	PROJECT RGA GLOBAL HQ TECHNICAL REPORT 3	BY: NMB	SHEET: A.L. Y
STRUCTURAL ENGINEERS	TECHNICAL REPORT S	CHKD:	PROJECT NO:
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334	HOLLOW CORE SYSTEM		TECH 3
T:248.865.8855 F:248.865.9449 www.rubyusa.com	GIRDER DESIGN	DATE:	PAGE:
	CIRDER DESEGN		

· DEAD LOADS		
- ASSUME LOPSE STEEL FRAMENG ALLOWA	NCE	
- FLOOR: 20 PSF + 68 PSF + 15 PSF + 10 PSF =		
- ROOF: Dr = 25 PSF + 10 PSF = 35 PSF		
• DESIGN LOADS DL = (4 FLRS)(123)(1350) + (35)(1350) = 711 + LL = (4)(22,7)(1350) = 123 + SL = (1)(22)(1350) = 29.7 +	•	
$1.20 + 1.6L + 0.55 = P_u$ $1.2(711^{k}) + 1.6(123^{k}) + 0.5(29.7^{k}) = P_u = 1065$	ĸ	
• SELECT COLUMN - UNBRACED LENGTH=15.3' - PIN - PIN : K=1.0		
- KL = 15,3' -> TABLE 16' - FROM AISC 360-10 TABLE 4-1: W14×99: ØP, = 1080 K		
SYSTEM DEPTH		
10" TOPPENG A ATT TOPPENG A AT	L"=3'-6"	
29,71 W30×108		
PROJECT	BY:	SHEET:

ruby +associates	PROJECT RGA GLOBAL HQ TECHNICAL REPORT 3	BY: NMB	SHEET: A1.5
STRUCTURAL ENGINEERS	TECHNICAL REFORT 3	CHKD:	PROJECT NO:
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334	HOLLOW CORE SYSTEM		TECH 3
T:248.865.8855 F:248.865.9449		DATE:	PAGE:
www.rubyusa.com	COLUMN DESIGN		


Prestressed Concrete 10"x4'-0" Hollow Core Plank

2 Hour Fire Resistance Rating With 2" Topping

	CAL PROPERTIES
A _c = 327 in. ² I _c = 5102 in. ⁴	Precast $b_w = 13.13$ in. Precast $S_{bcp} = 824$ in. ³
Y_{bcp} = 6.19 in. Y_{tcp} = 3.81 in. Y_{tcp} = 5.81 in.	Topping $S_{tct} = 1242 \text{ in.}^3$ Precast $S_{tcp} = 1340 \text{ in.}^3$ Precast Wt. = 272 PLF Precast Wt. = 68.00 PSF

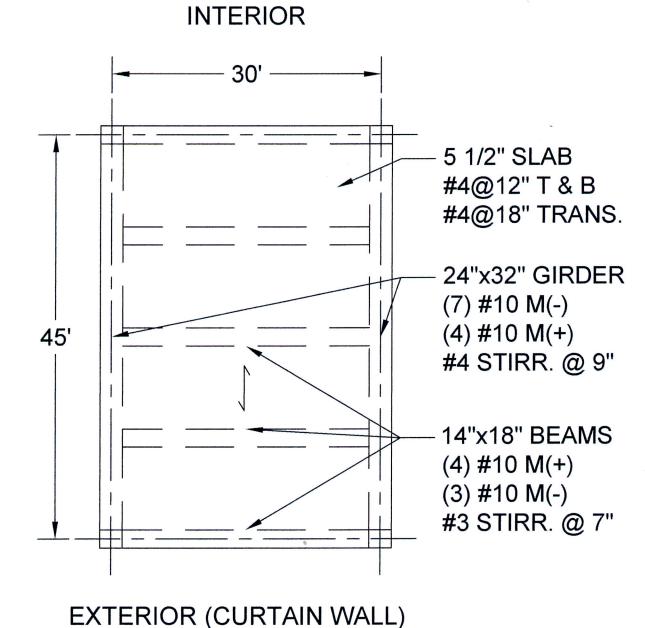
DESIGN DATA

- 1. Precast Strength @ 28 days = 6000 PSI
- 2. Precast Strength @ release = 3500 PSI
- 3. Precast Density = 150 PCF
- 4. Strand = 1/2"Ø and 0.6"Ø 270K Lo-Relaxation.
- 5. Strand Height = 1.75 in.
- 6. Ultimate moment capacity (when fully developed)... 6-1/2"Ø, 270K = 168.1 k-ft at 60% jacking force 7-1/2"Ø, 270K = 191.7 k-ft at 60% jacking force

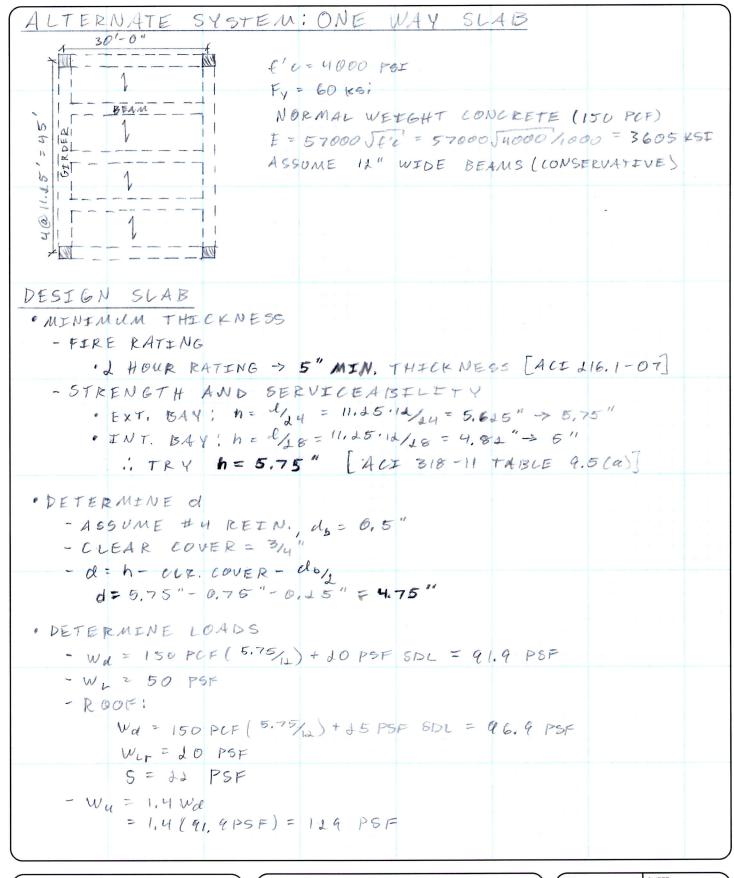
- 7. Maximum bottom tensile stress is $10\sqrt{fc} = 775 \text{ PSI}$
- 8. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- 9. Flexural strength capacity is based on stress/strain strand relationships.
- 10. Deflection limits were not considered when determining allowable loads in this table.
- 11. Topping Strength @ 28 days = 3000 PSI. Topping Weight = 25 PSF.
- 12. These tables are based upon the topping having a uniform 2" thickness over the entire span. A lesser thickness might occur if camber is not taken into account during design, thus reducing the load capacity.
- 13. Load values to the left of the solid line are controlled by ultimate shear strength.
- 14. Load values to the right are controlled by ultimate flexural strength or fire endurance limits.
- 15. Load values may be different for IBC 2000 & ACI 318-99. Load tables are available upon request.
- 16. Camber is inherent in all prestressed hollow core slabs and is a function of the amount of eccentric prestressing force needed to carry the superimposed design loads along with a number of other variables. Because prediction of camber is based on empirical formulas it is at best an estimate, with the actual camber usually higher than calculated values.

SAFE SUPERIMPOSED SERVICE LOADS IBC 2006 & ACI 3										318	-05	(1.2	D +	1.6	L)					
St	SPAN (FEET)																			
Pattern			27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
6 - 1/2"ø	LOAD (PSF)	202	181	161	144	128	114	101	90	79	69	60	52	45	38		>		<	
7 - 1/2"ø	LOAD (PSF)	246	222	200	180	162	146	131	118	105	94	84	74	66	58				<	

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17202-9203 717-267-4505 Fax 717-267-4518 This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths. The allowable loads shown in this table reflect a 2 Hour & 0 Minute fire resistance rating.


11/03/08

Alternate System 3: One-Way Slab System


This section presents schematic level member sizes and evaluation of the typical bay of concrete framing in a one-way slab system.

TYPICAL BAY-ONE-WAY SLAB SYSTEM SCALE: 3/32"=1'-0"

NOTES: Fy=50 KSI Ey=29,000 KSI f'c=4000 PSI NORMAL WEIGHT Ec=3605 KSI 2 HOUR FIRE RATING

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

ruby +associates	PROJECT RGA GLOBAL HQ TECHNICAL REPORT 3	BY: NMB	SHEET: A 3:3
STRUCTURAL ENGINEERS		CHKD:	PROJECT NO:
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334	ME-WAY SLAB SYSTEM		TECH 3
T:248.865.8855 F:248.865.9449		DATE:	PAGE:
www.rubyusa.com	SLAB DESIGN		
) (

30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449

www.rubyusa.com

THE ONE-WAY SLAB SYSTEM SLAB DESTGN

NMB	A3,4
CHKD:	PROJECT NO: TECH 3
DATE:	PAGE:

C. DEFEND DEFNITOR CENTUT
· DEST GN REINFORCEMENT
$-A_{SMZN} = \frac{3\sqrt{fc}}{f_{Y}} b_{w}d = \frac{3\sqrt{4000}}{60000} (12)(4.75) = 0.180 ind/ft$
-ASMAX = 200 bud = 200(11)(4.75) = 0.190 in*/64
-TEMPERATURE AND SHRINKAGE [ACT 318-11 \$ 7.6.5]
ASMEN = 0,001864 = 0.0018 (125(5.75)= 0.124 124/64
dn (++) 10.25 10.25 10.25
Wy lat 20.0 20,0 20.0
$M(COEFF.) = V_{11} + V_{16} = V_{11}$
Mu -1,82 1.25 -1.82
Asrea 0.090 0.062 0.090
ASMEN 0.180 0.180 0.180
REBAR #4@14" #4@14" #4@14"
ASFINAL 0.20 0.20 0.20
·SPACING
• SPACING Shax = 3h = 3(5,75) = 17.25" => 17" [ACT 318-11 \$7.6.5] MIN 18"
- CRACK CONTROL [ACI 318-11 \$ 10.6.4]
- URACE CONTROL (AUD STORING STORING)
$S_{MAX} = 15 \left(\frac{40000}{4/3 fy} \right) - 2.5 (CLR. COVER)$
$= 15 \left(\frac{40000}{15.6000} \right) - 1.5(0.75) = 13.115' = 5.13''$
313.600001
SMAX = 12 (40000) = 12" CONTROLS
• TEMPERATURE AND SHRINKAGE (TRANSVERSE)
1 pmin bd = 0.0014 (11) (4.75) = 0.0798 in *16+
$A_{5} = \begin{cases} P_{min} bd = 0.0014 (11) (4.75) = 0.0798 in *164 \\ P_{min} bd = 0.0018 (12) (4.75) = 0.101 in 764 \end{cases}$
5 MAX = 5 (5.75) . # 4 @ 18" MEN 18" CONTROLS
5.75" SLAB WITH: #40012" O.C. TOP& BOTTOM (FLEXURE)
#4 @ 18" O.C. TRANSVERSE
PROJECT BY: SHEET:
ruby +associates RGA GLOBAL HQ NMB A3.5
STRUCTURAL ENGINEERS TECHNICAL REPORT 3 CHKD: PROJECT NO:
30445 Northwestern Highway Suite 310 TITLE TECH 3
Formington Hills, Michigan 48334 Image: Difference of the second secon
www.rubyusa.com

.

$$\frac{\text{PESTENT FREEDREST OR SEAMS}{\text{TRY b=14}^{\circ}} = \frac{30 \cdot 11}{11} = (2, 1^{\circ} \Rightarrow 18'') [ACT 318 - 4 TABLE 9.5(4)]}{\text{PETRUME LOADS}}$$

$$\frac{1}{11} = \frac{1}{11} = (2, 1^{\circ} \Rightarrow 18'') [ACT 318 - 4 TABLE 9.5(4)]}{\text{Ware is 50 PEF}} = \frac{1}{12} (11, 15') = 809 PEF}$$

$$\frac{1}{11} = \frac{1}{10} (11, 15') = 809 PEF}$$

$$\frac{1}{11} = \frac{1}{10} (11, 15') = \frac{1}{10} (11, 15') = 809 PEF}$$

$$\frac{1}{11} = \frac{1}{10} (11, 15') = \frac{1}{10} (11$$

BEAM DESTGN

PAGE:

DATE:

$$\begin{array}{c} - \xi_{+} > 0,005 & \therefore \phi = 0,q \\ * M_{SD} SPAN MOMENT \\ M_{n} = A_{0}\xi_{V} \left(dt - \frac{a_{V}}{2} \right) \\ = 5.68 \left(6.0 \right) \left(15.76 - \frac{6\cdot t_{V}}{2} \right) / \frac{1}{4} \\ = 3845 \\ \pm \cdot t_{n} = 314 \\ \pm .568 \left(6.0 \right) \left(15.75 - \frac{6\cdot t_{V}}{2} \right) / \frac{1}{4} \\ = 3845 \\ \pm \cdot t_{n} = 314 \\ \pm .568 \\ \pm .578 \\ \hline M_{n} = \frac{1}{8}87 \\ \mp t \times N \\ M_{n} = \frac{1}{8}87 \\ \mp t \times N \\ \hline M_{n} = \frac{1}{8}87 \\ \mp t \times N \\ \hline M_{n} = \frac{1}{8}87 \\ \mp t \times N \\ \hline M_{n} = \frac{1}{8}87 \\ \mp t \times N \\ \hline M_{n} = \frac{1}{8}87 \\ \mp t \times N \\ \hline M_{n} = \frac{1}{8}87 \\ \mp t \times 2 \\ \hline M_{n} = \frac{1}{8}87 \\ \mp t \times 2 \\ \hline M_{n} = \frac{1}{8}87 \\ \mp t \times 2 \\ \hline M_{n} = \frac{1}{8}87 \\ \mp t \times 2 \\ \hline M_{n} = \frac{1}{8}3 \\ \mp t \\ \hline M_{n} = \frac{1}{8} \\ \mp t \\ \hline M_{n} =$$

STRUCTURAL	ENGINEERS
------------	-----------

30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449

www.rubyusa.com

TECHNICAL REPORT 3 THE ONE-WAY SLAB SYSTEM BEAM DESIGN

BY: NMB	SHEET: A 3.7
CHKD:	PROJECT NO: TECH 3
DATE:	PAGE:

$$\begin{split} & \emptyset \, V_{\mu} = \emptyset \left(U_{C} + V_{S} \right) \\ & \emptyset = 0.75 \\ & V_{L} = \lambda \, \lambda \, f(C \, b_{w} \, d = \lambda \, (1) \, \sqrt{10000} \, (14) \, (15, 75) = \lambda \, 7.4 \times \\ & V_{S} = \lambda \, v \, f_{YE} \, \left(\frac{M_{S}}{4} \right) \\ & V_{S} = \lambda \, v \, f_{YE} \, \left(\frac{M_{S}}{675} - \lambda \, 7.4 = 17.4 \times 2\lambda \, (k-7, 4) \times \right) \times \\ & V_{S} = \lambda \, v \, f_{YE} \, \left(\frac{M_{S}}{675} - \lambda \, 7.4 = 17.4 \times 2\lambda \, (k-7, 4) \times \right) \times \\ & S_{MQX} = \frac{M_{S}}{4000} \, \left(\frac{M_{S}}{24} = 15.75 \, \chi = 7.4 \Rightarrow 7^{\prime\prime} \, \text{CONTROLS} \\ & \Lambda_{V,MJN} = \left(\frac{M_{S}}{675} - \lambda \, 7.4 \times 50.75 \, \sqrt{10000} \, (14) \, (17) \, / \, 6000 \times 0.077 \, i n^{\prime} \\ & \Lambda_{V,MJN} = \left(\frac{M_{S}}{7000} = \frac{375}{1000} \, 50.5 \, \sqrt{10000} \, (14) \, (17) \, / \, 6000 \times 0.077 \, i n^{\prime} \\ & \Lambda_{V,MJN} = \left(\frac{M_{S}}{1000} = \frac{375}{1000} \, \frac{10}{1000} \, (1600) \, (15.75 \, \sqrt{10000} \, (10) \, (17) \, / \, 6000 \times 0.077 \, i n^{\prime} \\ & S = \Lambda_{V} \, f_{YH} \, \left(\frac{M_{V}}{V_{S}} \right) = 0.11 \, (60) \, \left(\frac{15.75}{17.4} \right) \approx 11.4^{\prime\prime} = 211^{\prime\prime} \times 5.0.8 \, \chi \\ & \Lambda_{V} \, F_{PO00} = \frac{375}{100} \, \frac{1}{100} \, \frac{1}{1000} \, \frac{1}{1000} \, \frac{1}{10000} \, \frac{1}{100000} \, \frac{1}{10000} \, \frac{1}{100000} \, \frac{1}{1000000} \, \frac{1}{100000} \, \frac{1}{100000} \, \frac{1}{100000} \, \frac{1}{1000000} \, \frac{1}{100000} \, \frac{1}{1000000} \, \frac{1}{100000} \, \frac{1}{100000} \, \frac{1}{100000} \, \frac{1}{100000} \, \frac{1}{100000} \, \frac{1}{10000} \, \frac{1}{100000} \, \frac{1}{1000000} \, \frac{1}{100000} \, \frac{1}{100000} \, \frac{1}{100000} \, \frac{1}{1000000} \, \frac{1}{100000} \, \frac{1}{1000000} \, \frac{1}{100000} \, \frac{1}{1000000} \, \frac{1}{100000} \, \frac{1}{1000000} \, \frac{1}{1000000} \, \frac{1}{100000} \, \frac{1}{100000} \, \frac{1}{100$$

ruby +associates	PROJECT PGA GLOBAL HQ TECHNICAL REPORT 3	NMB	SHEET: A 3.8
STRUCTURAL ENGINEERS	TECHNICAL NUT ON D	CHKD:	PROJECT NO:
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334	THE ONE-WAY SLAB SYSTEM		TECH 3
T:248.865.8855 F:248.865.9449		DATE:	PAGE:
www.rubyusa.com	BEAM DESIGN	J	

DESEGN GERDER	
p p p	
45'=l	
DETERMINE LOADS	
WLL=50 PSF (30') = 1,5 KLF	
P= woed = 1.2 KLF (301) = 36 K	
WDI= 3P/2 = 3.36/45 = 2.4 KLF	
- ASSUME SELF WEIGHT = 10-15% OF DL	
$W_{u} = 1.2 W_{DL} (1.15) + 1.6 W_{L}$	
= 1.1(1.19)(1.15) + 1.6(1.5) = 5.71 KLF	
$M_{4} = \frac{Wl^{+}}{14} = \frac{5.71 \cdot 45^{+}}{14} = 964 \text{ ft.} \text{K}$	
·ESTEMATE GERDER SIZE	
20 My = hold	
-ASSUME b = 3/4 d	
20 Mu = 0.75 d 3	
316.67 Mu = d	
d=(26.67.964) 13 = 29.5" => h= 32"	
6= 0,75.29.5=22.1=> 23"=> 6=24"	
WSW = 150 PCF (24/4) (31-5.75) /1000 = 0.656 KLF	
Wu=1.2 (2.4+0.656)+1.6(1.5)=6.07 KLF	
· DESIGN MOMENTS	
$M_{4} = \frac{wl^{+}}{24} = \frac{6.07(45^{+})}{24} = 512 \text{ ft.} \text{k}$	
$M_{4} = \frac{-W_{1}}{1} = \frac{-6.07(45^{d})}{1} = 1024 \text{ ft.} \text{ K}$	
·NEGATIVE REINFORCEMENT	
$A_{5} = \frac{M_{u}}{4d} = \frac{1024}{4(29.5)} = 8.67 \text{ in}^{4}$	
TRY (7) #10=> ASPROV = (1,271,+)(2) = 8,89 int	
PROJECT RGA GLOBAL HQ	BY: SHEET: NMB A 3.9
ruby +associates RGA GLOBAL HQ	NMD ADIC

CTDUCTUDAL	ENGINEERS
SINUCIUNAI	LENGINCERS

30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334 T:248.865.8855 F:248.865.9449

RGA GLOBAL HQ	
TECHNICAL REPORT 3	1
TITLE	
ONE-WAY SLAB SYSTEM	_
GERDER DESEGN	
0	

NMB	SHEET: A 3.9
CHKD:	PROJECT NO: TEC#3
DATE:	PAGE:

$$\begin{aligned} \alpha = \frac{\mathscr{G}, \mathscr{G}, \mathscr{G}}{\mathscr{G}, \mathscr{G}, \mathscr{G}}(4)(14)} = 6.5 H^{"} \\ \mathcal{L} = \frac{\mathscr{G}}{\mathscr{G}_{1}} = \frac{6.5 H}{\mathscr{G}, \mathscr{G}, \mathscr{G}} = 7.6 \mathbb{Q}^{"} \\ \mathcal{L}_{5} = \mathscr{G}, \mathscr{G}_{0} \left(\frac{14(.5 - 7.6 \mathbb{Q})}{7.6 \mathbb{Q}} \right) = 0.0085 > 0.004 \text{ OV} \\ \mathcal{D} = \mathscr{O}, \mathscr{Q} \\ \mathcal{D} \\ \mathcal{D} = \mathscr{O}, \mathscr{Q} \\ \mathcal{D} = \mathscr{O}, \mathscr{Q} \\ \mathcal{D} \\ \mathcal{D} = \mathscr{O}, \mathscr{Q} \\ \mathcal{D} \\ \mathcal{D} = \mathscr{O}, \mathscr{Q} \\ \mathcal{D}$$

$$\mathcal{D} = \mathscr{O}, \mathscr{Q} \\ \mathcal{D} = \mathscr{O}, \mathscr{Q} \\ \mathcal{D}$$

$$\mathcal{D} = \mathscr{O}, \mathscr{Q} \\ \mathcal{D} = \mathscr{O}, \mathscr{Q} \\ \mathcal$$

	ruby +associates	RGA GLOBAL HQ TECHNICAL REPORT 3	NMB	SHEET: A 3,10
	STRUCTURAL ENGINEERS	IECHNICAL RETURN	CHKD:	PROJECT NO:
	30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334	TITLE ONE-WAY SLAB		TECH 3
	T:248.865.8855 F:248.865.9449 www.rubyusa.com	GIRDER DESIGN	DATE:	PAGE:
l				

$$\begin{aligned} \begin{array}{c} S = 0.44 \left(60 \right) \left(\begin{array}{c} 1.8, 6 \\ 5.7, 5 \right) = 14.3^{\circ} = 524^{\circ} \quad CONTROLS \\ V_{5} = 8.44 \left(60 \right) \left(44.5 + 24 \right) = 1114 \leq 14.5 \leq 4 \\ 0 \quad V_{11} = 0.75 \left(84.6 + 54 \right) = 1114 \leq 14.5 \leq 4 \\ 0 \quad V_{12} = 0.75 \left(84.6 + 54 \right) = 1114 \leq 14.5 \leq 4 \\ 145 \int_{0.75} - 84.6 = 77, 1 = V_{5} \\ \hline 27,1 = 14.5 \\ 3.44 \left(60 \right) = \frac{14.5}{5} = 25 = 9, 83^{\circ} = 29^{\circ} \\ V_{5} = 0.44 \left(60 \right) \left(\frac{14}{5}, \frac{5}{2} \right) = 78.6^{\circ} \\ 0 \quad V_{7} = 0.75 \left(84.6 + 77.6 + 7 \right) = 126^{\circ} \\ \hline 0 \quad V_{7} = 0.75 \left(84.6 + 77.6 + 7 \right) = 126^{\circ} \\ \hline 0 \quad V_{7} = 0.75 \left(84.6 + 77.6 + 7 \right) = 126^{\circ} \\ \hline 0 \quad V_{7} = 0.75 \left(84.6 + 77.6 + 7 \right) = 126^{\circ} \\ \hline 0 \quad V_{7} = 0.75 \left(84.6 + 77.6 + 7 \right) = 126^{\circ} \\ \hline 0 \quad V_{7} = 0.75 \left(84.6 + 77.6 + 7 \right) \\ A_{LL} \quad Max = -\frac{1}{2400} = \frac{415 \cdot 10}{2400} = 1.5^{\circ} \\ A_{LL} \quad Max = -\frac{1}{2400} = \frac{415 \cdot 10}{2400} = 1.5^{\circ} \\ A_{LL} \quad Max = -\frac{1}{2400} = \frac{415 \cdot 10}{2400} = 1.5^{\circ} \\ A_{LL} \quad Max = -\frac{1}{2400} = \frac{415 \cdot 10}{2400} = 0.5866^{\circ} < 1.5^{\circ} \\ A_{LL} = \frac{15 \left(1.5 \right) \left(45^{\circ} \right) \left(17128 \right)}{112} = 0.5866^{\circ} < 1.5^{\circ} \\ M_{TL} = 4.56 \text{ kLF} \\ A_{TL} = \frac{\left(55 \right) \left(4.5 \right) \left(45^{\circ} \right) \left(17128 \right)}{3844 \left(3665 \right) \left(655366 \right)} = 1.78^{\circ} < 1.5^{\circ} \\ M_{TL} = \frac{1}{3844} \left(3665 \right) \left(655366 \right) \\ \hline SY \text{ STR} \quad SLAB \\ \# 100 \quad 14^{\circ} a_{L}. \quad TRAUSURES \\ \# 100 \quad 15^{\circ} a_{L}. \quad TRAUSURE$$

System Comparisons

This section presents calculations to support the comparison of the considered systems.

SUCTED COUDARTCON	C .	
SYSTEM COMPARISON		
· SYSTEM WEIGHTS		
- EXISTING !		
CONC: 33.8		
DECK: 2.14 1	>SF	
FRAMING: 13 PSI		
49	PSF	
- JOIST SYSTEM:		
CONC: 33.8 PSF		
DECK: 1.14 PSF		
JOISTS (LIPLE)	(45')(8)/1350SF = 5,6 PSF	
WL4x68: (68PL)	=)(30)/1350 = 1.51 PSF	
	F) (30')/1350 = 2,1 PSF	
	F) (14') (.4) /1350 = 3.3 PSF	
totAL = 4		
- HOLLOW CORE	SYSTEM;	
PLANK = 68 PSF		
TOPPING = 15 PS	0F	
W14×62: (61)	2(F)(30')/1350 = 1,38 PSF	
W27×941: 2.1F	SF	
W30×108; (108	PLF) (45') (2) /1350 = 7.2 PSF	
W14×99: (99P	LF) (14') (4) /1350 = 4.11 PSF	
TOTAL: 10		
- ONE-WAY SLAB		
	= (5.75/12) = 71.9 PSF	
	$(\frac{14}{12})(\frac{18}{12})(5)(30')/1350 =$	
	F(d4/2)(31/12)(2)(45')/1350 =	
COL. ALLOW: \$50	PCF (18/2) (2) (4) (14') /1350 =	18,7 PSF
TOTAL: 1	OI.d PSF	
	PROJECT	BY: SHEET:
ruby +associates	RGA GLOBAL HQ	NMB C.2
	TECHNICAL REPORT 3	
STRUCTURAL ENGINEERS		CHKD: PROJECT NO: TECH 3
30445 Northwestern Highway Suite 310 Farmington Hills, Michigan 48334 Toda 845 0855 5 2049 85 0440	SYSTEM COMPARISONS	
T:248.865.8855 F:248.865.9449 www.rubyusa.com	WEIGHT	DATE: PAGE:
www.idbydbd.com	WE + Gerrin	11 1 1

EXISTING SYSTEM-Bare Cost						
Item	ltem #	Material	Install.	Total	Bay Size Adjust.	
Columns	B1010 208 9200	14.05	0.36	14.42	N/A	
Composite Beams, Deck & Slab	B 1010 256 8000	18.60	7.65	26.25	25.31	
			Cost=	39.73	per. SF	

FLOOR JOIST SYSTEM-Bare Cost						
Item	ltem #	Material	Install.	Total	Bay Size Adjust.	
Steel Joists, Beams & Slab on Columns	B 1010 250 9750	18.70	7.20	25.90	28.54	
Steel Column	B 1010 250 9800	6.04	1.80	7.84	8.64	
			Cost=	37.18	per. SF	

HOLLOW CORE PLANK SYSTEM-Bare Cost						
Item	ltem #	Material	Install.	Total	Bay Size Adjust.	
W Shape Beams & Girders	B1010 241 9970	19.55	6.80	26.35	29.04	
Precast Plank with 2" Topping	B1010 230 3600	8.45	4.84	13.25	N/A	
Steel Column	B1010 208 9200	14.05	0.36	14.42	N/A	
			Cost=	56.70	per. SF	

ONE-WAY SLAB SYSTEM-Bare Cost						
Item	Item #	Material	Install.	Total	Bay Size Adjust.	
Cast in Place Slabs, One-Way	B1010 217 5700	4.14	8.40	12.54	N/A	
Concrete Framing	(Local)	3.50	7.73	11.23	N/A	
Concrete Column	B1010 203 9900	2.20	5.26	7.46	N/A	
			Cost=	31.23	per. SF	